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1. INTRODUCTION

Di!erential equations and boundary conditions which describe physical phenomena are
often obtained from physical principles by means of the variational calculus techniques. The
necessary conditions for the existence of extremes of a functional lead to the Euler
di!erential equation which involves unnecessary derivatives of higher order than the order
of the derivatives included in the functional. Since this functional describes a certain type of
energy, it is more natural, from a physical point of view, to look for a weak solution of the
problem under consideration than to "nd its classical solution which does not exist for
many common industrial problems.

A weak solution of a boundary value or eigenvalue problem may be obtained, under
rather natural assumptions for the parameters of the problem, by variational methods. Let
G be a domain in R2 with a piecewise smooth boundary C"LG and the operator

Au" +
DaD, DbD)2

(!1)DaDDa (aab(x)Dbu(x))" +
DaD, DbD)2

(!1)DaD LDaD

Lxa1
1

Lxa2
2
Aaab (x)

LDbDu(x)

Lxb1
1

Lxb2
2
B , (1)

where a"(a
1
, a

2
), b"(b

1
, b

2
) are multi-index vectors whose co-ordinates are non-negative

integers and DaD, DbD are the sums DaD"a
1
#a

2
, DbD"b

1
#b

2
.

Let aab(x)3C( DaD) (G), u(x)3C(4)(G). The summation in equation (1) is carried over all the
vectors a and b for which DaD, DbD)2.

The equations which govern the statical and dynamical behaviour of isotropic,
orthotropic and anisotropic plates with complicating e!ects are associated with operator A,
as very particular cases.

Thus, if we de"ne
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and aab"0 in the remaining cases, we obtain
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where u denotes the de#ection of the mid-surface of the plate and D
kl

the rigidities of the
anisotropic plate. The notation follows the one used in reference [1]. Similarly, if we put
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D when a"(0, 2), b"(0, 2),

0 in the other cases,

we obtain the operators Au"D
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respectively, to the orthotropic and the isotropic plates [2}4]. Free transverse vibrations of
a thin elastic plate are governed by the partial di!erential equation

A(u (x
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, t))"!oh
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, (3)

where o denotes the density of the plate material and h the plate thickness.
In the case of normal modes of vibrations, one takes u(x

1
, x

2
, t)"w(x
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2
) cosut,

consequently (3) is reduced to
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The statical behaviour of the plate when a load q is applied, is governed by
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2
). (5)

Let G be M(x
1
, x

2
); 0)x

1
)a; 0)x

2
)bN (see Figure 1). Both in the dynamical and statical

cases, the boundary conditions which correspond to a rectangular anisotropic plate with
edges elastically restrained against rotation are
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Figure 1. Rectangular plate under study (numbers at the edges are used as subscripts in de"ning edge restraint
parameters).
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In equations (6b)} (6e), r
i
denotes the rotational sti!ness per unit length along the edge i.

Since boundary conditions containing derivatives of orders higher than m!1 are called
unstable for a di!erential equation of order 2 m [5], the boundary conditions (6b)} (6e) are
unstable if 0)r

i
(R, while the conditions (6a) and (6b)} (6e) with r

i
"R, are geometric

or stable. The geometric and natural boundary conditions are of di!erent nature so in order
to clearly distinguish them, it is useful to introduce the space < of elements of the Sobolev
space H2(G) which satisfy the corresponding stable homogeneous boundary conditions [6].

A weak solution of the equation Au"f of order 4 is a function from the Sobolev space
H2(G), in consequence, the space < is given by <"Mv, v3H2(G), v DC"0 in the sense of
tracesN

2. THE WEAK SOLUTION OF THE BOUNDARY VALUE PROBLEM

Now the boundary value problem (5)}(6) is transformed into one that leads to the
concept of weak solution. First assume that q(x)3C(GM ) and let w3C(4)(GM ) be the classical
solution of the problem (5)} (6) with the operator A rewritten as
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If we take an arbitrary function v3<, and multiply equation (5) by this function and
integrate the result over the domain G we get
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We will use the Green formula ::
G
u (Lv/Lx

i
) dx"{Cuvn

i
ds!::

G
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where n
i
denotes the components of the normal exterior to the boundary of G. If we apply

the Green formula to the left-hand side of equation (8) we obtain
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with u"v or w.

Taking into account the boundary conditions (6b)} (6e) and the fact that since v3<, is v"0
in ¸2(C ), we get (see Figure 1)
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Then, we have
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(9)

The double integral in equation (9) constitutes the bilinear form A(v, w) associated with the
di!erential operator A de"ned in equation (7), and the curvilinear integrals constitute the
boundary bilinear form a (v, w). The equality (8) now assumes the form

B(v, w)"PP
G

q v dx"(q, v)
¸2(G) .
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Now it is possible to weaken the assumptions. Let q(x)3¸2(G) and the bilinear form B(v, w)
continuous. A function w3H2(G) is called a weak solution of the boundary value problem
(5), (6) if

w3<,

B (v, w)"(v, q)
¸2(G)∀v3<.

(10)

2.1. THE CONTINUITY OF THE BILINEAR FORM

We must prove the continuity of the bilinear form (B(v, w). Considering that the terms of
A(v,w) have the form D
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From equations (11) and (12) we have that B(v, u) is continuous on H2(G)xH2(G), i.e. there
exists a constant C

4
'0 such that

DB(v, w) D)C
4
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2.2. THE <-ELLIPTICITY OF THE BILINEAR FORM

If the bilinear form B(v, w) is also <-elliptic, then the problem under consideration has
exactly one weak solution w [5]. It is known from the theory of elasticity that the quadratic
form which represents twice the potential energy density of a elastic body is positive de"nite,
i.e., there exists a constant C

5
'0 so that
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where c
iklm

are the sti!ness matrix coe$cients, e
ik

the strains and u is the displacement vector
in terms of a x

1
, x

2
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3
co-ordinate system. Under the assumptions of the anisotropic plate

theory [1] inequality (14) reduces to
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where the constants B
ij

are expressed by the coe$cients of the sti!ness matrix. The
integration in the plate volume, in the case of constant thickness h, leads to
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From this and equation (9) it is inferred that a constant C
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'0 exists such that
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By applying Friedrichs inequality [6].

EuE2H2(G))KA +
Di D"2 PPG

(Diu)2dx#PC

u2(s) dsB, K'0, ∀u3H2(G),

we obtain

B(v, v)*C
6PP

G
CA

L2v

Lx2
1
B
2
#A

L2v

Lx2
2
B
2
#A

L2v

Lx
1
Lx

2
B
2

Ddx*
C

6
K

EvE2H2(G)∀v3<. (15)

The inequality (15) implies that B(v,w) is <-elliptic.

3. APPLICATION OF A DIRECT VARIATIONAL METHOD TO THE CONSTRUCTION
OF APPROXIMATIONS OF THE WEAK SOLUTION

We proved that the bilinear form B(v,w) is continuous and <-elliptic. Since it is also
symmetric, the function w(x) is the weak solution of equation (10), if and only if it minimizes
in the space <, the functional
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If we apply the Ritz method, the function w which minimizes the functional (16) in the space
< is approximately by w
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4. THE EIGENVALUE PROBLEM

Let us consider free vibrations of a rectangular anisotropic plate whose edges are
elastically restrained against rotation. The eigenvalue problem is given by equation (4) and
boundary conditions (6). We rewrite it as the problem of "nding a number X and a function
w such that
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Since the bilinear form B(v, w) is symmetric, continuous and<-elliptic, it has a countable set
of eigenvalues which are given by [6]
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In equations (18) and (19) the bilinear form B(v, v) is given by equation (9) and is
proportional to the maximum strain energy of the mechanical system under study which is
given by
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On the other hand (v, v)
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(v)2dx, is proportional to the maximum kinetic energy of

the plate, ¹
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Let us introduce a new inner product in space <: ((v, w))"B(v, w) ∀w, v3<. If the
sequence Mv
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leads to the equation for the determinant of the Ritz system:
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Approximate eigenvalues can be obtained from equation (20) when dealing with the
dynamical behaviour of the plate under consideration.

5. THE ROLE OF NATURAL BOUNDARY CONDITIONS

When using the Ritz method, we choose a sequence of functions, v
i
which constitute

a base in the space <, where only the homogeneous stable boundary conditions are
included, so there is no need to subject the functions v

i
to the natural boundary conditions.

The fact that the natural boundary conditions of a system need not be satis"ed by the
chosen co-ordinate functions is a very important characteristic of the Ritz method, specially
when dealing with problems for which such satisfaction is very di$cult to achieve. For
instance, this is the case of a rectangular anisotropic, orthotropic or isotropic plate with
edges elastically restrained against rotation. This property has been veri"ed in the present
work by using orthogonal polynomials in the Ritz method. For using the Ritz procedure we
took the approximation of the form

w (x
1
, x

2
)"

N
+
i/0

M
+
j/0

c
ij
/
i
(x

1
)u

j
(x

2
). (21)

Here the c
ij

are arbitrary coe$cients which are to be determined and M/
i
(x

1
), u

j
(x

2
)N is the

set of the orthogonal polynomials. The procedure for constructing the orthogonal
polynomials in the variable x

1
is the following:
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.

The same procedure is applied to the polynomials in x
2
. In the present work, all the

polynomials satisfy only the geometric (or stable) boundary conditions. Since the
set of orthogonal polynomials used is a base in space<, as the upper limits of summation N,
M in equation (21) are increased, the exact solution may be approximated as closely
as desired.

6. NUMERICAL RESULTS

Table 1 depicts values of the maximum de#ection in terms of the coe$cient k where
w
max

"(ka4/D
11

)q
0
, of a simply supported anisotropic square plate and a clamped



TABLE 1

<alues of the maximum de-ection in terms of the coe.cient k were w
max

"(ka4/D11)q
0
, of

a simply supported square plate and a clamped square plate (N"M"5 in equation (21))

D
22

/D
11

(D
12
#2D

66
)

D
11

D
16

D
11

"

D
26

D
11

Simply supported square plate Clamped square
Plate

Reference [2] Present study Present study
k k k

1 1 0 0)00406 0)0040609 0)0012653
1 1)061 !0)174 0)00411 0)0041101 0)0012760
1 1)412 !0)454 0)00444 0)004414 0)0013475
1 1)500 !0)500 0)00452 0)004491 0)0013676
1 1)690 !0)587 0)00476 0)004657 0)0014146
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anisotropic square plate both subjected to a uniform transverse load q(x, y)"q
0
.

The anisotropy is characterised by the values of the coe$cients D
22

/D
11

, D
16

/D
11

,
D

26
/D

11
and (D

12
#2D

66
)/D

11
, where the notations and material properties follow those of

reference [2].
In the case of the simply supported plate, the values obtained with the present method are

compared with the exact values reported by Whitney [2]. Excellent agreement was obtained
between the present values and the exact results.

Table 2 contains results of the "rst four frequencies given in terms of j where
u"(j/b2) JD

11
/o for a square-clamped anisotropic plate. The plate considered is

composed of an orthotropic material oriented with the principal axis of orthotropy at
h degrees from the x

1
-axis. The material properties are E

L
/E

T
"10, G

LT
/E

T
"0)25,

k
LT

"0)3. The notations and the material properties follow those of reference [2].

7. CONCLUDING REMARKS

The existence and uniqueness of the weak solutions of boundary value problems and
eigenvalue problems, which correspond, respectively, to the statical and dynamical
behaviour of rectangular anisotropic, orthotropic and isotropic plates with edges elastically
restrained against rotation has been demonstrated. The use of the weak solution theory
enables a substantial generalisation of assumptions concerning the smoothness of
coe$cients of the di!erential equation (1) and of the function q which represents the load in
equation (5).

It is also the purpose of the present paper to present some technically interesting
results for the de#ection and natural frequencies of anisotropic plates. The Ritz method
has been employed by using orthogonal polynomials as trial functions which satisfy
only the geometric or stable boundary conditions. As it was expected, the convergence
of frequencies is monotonic, and upper bounds in the values of the frequency parameters
are obtained successively as additional terms are taken in the approximation function (21),
in spite of the fact that the co-ordinate functions do not satisfy the natural boundary
conditions. Since the combinations of boundary conditions, along with speci"c values for
the sti!ness constants for the restraints are prohibitively large in number, results are
presented for only a few cases.



TABLE 2

<alues of the ,rst four natural frequencies of a square clamped plate, given in terms of j where u"(j/b2) JD
11

/o (N"M"5 in equation (21))

Sti!ness ratios j

D
22

/D
11

D
12

/D
11

D
66

/D
11

D
16

/D
11

D
26

/D
11

Mode 1 Mode 2 Mode 3 Mode 4

0)1 0)03 0)0247750 0 0 23)96642 31)14868 46)4672 62)77512
0)1152032 0)1008125 0)0948811 !0)243335 !0)012084 24)60065 33)57042 50)8170 63)3439
0)2482224 0)3448467 0)3361177 !0)495691 !0)155368 27)57683 42)8323 65)4984 66)9592
1 0)8425860 0)8259868 !0)174796 !0)714796 36)51952 62)3162 83)5668 92)8005
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